top of page

Search Results

35 items found for ""

  • Flexible Liner Underground Technologies | New Mexico

    Innovative Flexible Liners for High Resolution Hydrogeologic Characterization Sealing Boreholes Blank FLUTe Liner Mapping NAPL Bedrock Characteristics Transmissivity Profiling Reverse Head Profiling Multi Level Groundwater Sampling Water FLUTe Shallow Water FLUTe Click Here for the Full List of FLUTe Methods and Products Get The Definitive FLUTe Manual At Amazon AdsP2p Watch the Video Below To Learn More! © 2022 by FLUTe

  • FLUTe - About

    About Our Company FLUTe was founded in 1996 by Carl Keller - Principal Scientist , to apply the unique attributes of inverting/everting flexible liners to underground measurements and other uses. The quality of construction, performance and cost effectiveness of our flexible liner systems are why our clients are highly satisfied with our work. ​ Carl Keller is the recipient of the 1994 R&D 100 Award for his flexible liner patent. The FLUTe designs have gained recognition with the National Ground Water Association Technology Award in 2008 . FLUTe systems have continually evolved and are now used in 12 countries by large corporations, regulatory agencies, and research institutions. FLUTe's unique methods are covered by 30 domestic patents, 13 foreign patents with others pending . ​ FLUTe's main plant and offices are in Velarde, NM with other facilities in Albuquerque, NM and Warminster, PA. FLUTe methods for high resolution underground measurements of many kinds have gained acceptance as superior, or complementary, to traditional methods. A company is only as good as it's staff and we have the best! ​ Our senior staff average over 15 years in the flexible liner business: ​ Lisa Keller Vice President Responsible for the Implementation of the original vision and goals of the company. Oversees the company operations in support of Fabrication Fielding and Office. ​ Mark Sanchez Chief Of Operations/Fabrication Oversight of administrative staff and production staff and coordination of customer orders with production staff, plus maintenance of inventory, and oversight of the Velarde fabrication and test facility. Ian Sharp Chief Of Technology/Fielding Responsible for communicating on all phases of FLUTe technology, methods and best use. Interfaces with customers, regulators, fielding crews, and production staff. Defines schedules of FLUTe's excellent field crews, oversees fielding installations and construction of FLUTe's unique machines. ​ Daniel Schramm East Coast Field Manager Field Trainer; East Coast Point of Contact; Schedules and organizes field mobilizations for the Warminster, PA location. Steve Martinez Production Manager Oversees all liner fabrication, and setting the fabrication schedule. Assures fabrication staff have design specifications and the proper training, maintains quality assurance procedures and records. Lydia Martinez Administrator/Account Manager Administers contracting, accounting services, and human resources. FLUTe International distributers: BRAZIL - Paulo Negrão , Clean Environment Brasil AUSTRALIA - Mike Mercuri , Matrix Drilling PTY LTD SWEDEN- Patrik Nilsson, PhD DIC EurGeol, Rosmarus Enviro "Contact Us" or Call our office at 1-505-852-0128 for more information ​

  • FLUTe - About

    About Our Company FLUTe was founded in 1996 by Carl Keller - Principal Scientist , to apply the unique attributes of inverting/everting flexible liners to underground measurements and other uses. The quality of construction, performance and cost effectiveness of our flexible liner systems are why our clients are highly satisfied with our work. ​ Carl Keller is the recipient of the 1994 R&D 100 Award for his flexible liner patent. The FLUTe designs have gained recognition with the National Ground Water Association Technology Award in 2008 . FLUTe systems have continually evolved and are now used in 12 countries by large corporations, regulatory agencies, and research institutions. FLUTe's unique methods are covered by 30 domestic patents, 13 foreign patents with others pending . ​ FLUTe's main plant and offices are in Velarde, NM with other facilities in Albuquerque, NM and Warminster, PA. FLUTe methods for high resolution underground measurements of many kinds have gained acceptance as superior, or complementary, to traditional methods. A company is only as good as it's staff and we have the best! ​ Our senior staff average over 15 years in the flexible liner business: ​ Lisa Keller Vice President Responsible for the Implementation of the original vision and goals of the company. Oversees the company operations in support of Fabrication Fielding and Office. ​ Mark Sanchez Chief Of Operations/Fabrication Oversight of administrative staff and production staff and coordination of customer orders with production staff, plus maintenance of inventory, and oversight of the Velarde fabrication and test facility. Ian Sharp Chief of Technology/Fielding Responsible for communicating on all phases of FLUTe technology, methods and best use. Interfaces with customers, regulators, fielding crews, and production staff. Defines schedules of FLUTe's excellent field crews, oversees fielding installations and construction of FLUTe's unique machines. ​ Daniel Schramm East Coast Field Manager Field Trainer; East Coast Point of Contact; Schedules and organizes field mobilizations for the Warminster, PA location. Steve Martinez Production Manager Oversees all liner fabrication, and setting the fabrication schedule. Assures fabrication staff have design specifications and the proper training, maintains quality assurance procedures and records. Lydia Martinez Administrator/Account Manager Administers contracting, accounting services, and human resources. FLUTe International distributers: BRAZIL - Paulo Negrão , Clean Environment Brasil AUSTRALIA - Mike Mercuri , Matrix Drilling PTY LTD SWEDEN- Patrik Nilsson, PhD DIC EurGeol, Rosmarus Enviro "Contact Us" or Call our office at 1-505-852-0128 for more information ​

  • FLUTe - Combination of Methods

    ​ ​ While FLUTe’s many methods are useful when used independently of one another, when coupled together, they offer a cost effective and thorough characterization of sub surface environmental and geologic conditions including the following: ​ 1. Absence/presence and location of free product ​ 2. Distribution of dissolved phase contaminants ​ 3. Transmissivity and H ead distributions ​ 4. Groundwater Sampling Systems The Blank liner, NAPL FLUTe and FACT A common question is “where is the contaminant?” This combination uses the Blank liner covered with the color reactive NAPL detection covering (NAPL FLUTe) plus the activated carbon felt strip (FACT) for wicking the dissolved phase of a variety of contaminants. The covered liner is installed immediately after the borehole is drilled to prevent cross connection. Two weeks later, the liner is removed. Any stains on the cover are photographed with an adjacent tape measure to locate NAPL sources. The FACT carbon felt is cut from the cover, rolled, and stored in DI water for future assessment as desired for identification of the dissolved contaminants. The blank liner is immediately installed back into the borehole to seal against cross contamination. Sometimes, geophysical measurements are made in the open hole before the liner is reinstalled. Whereas the NAPL FLUTe system can be installed without the FACT, the FACT system is always installed in the NAPL FLUTe cover. The Blank liner, NAPL FLUTe, FACT and Transmissivity profile This is the same as the above sequence, but when the blank liner is reinstalled, it is done while performing the high resolution transmissivity profile of the formation. When completed, the borehole is sealed. Sometimes, geophysical measurements are made in the open borehole before the liner is reinstalled. The transmissivity profile is very helpful in detection of the active flow zones in the formation and in guiding the selection of sections of the FACT to be analyzed. The Blank liner, NAPL FLUTe, FACT, transmissivity profile, and Water FLUTe This is the same as the above measurements followed by the construction of the Water FLUTe multi-level system. The blank liner is then removed and the Water FLUTe liner is installed in the same day for water quality and head measurements. In some cases, the combinations above are reduced to a popular FLUTe Trio which includes the sealing Blank liner, the transmissivity profile for each borehole after they are all sealed (sometimes following the geophysics measurements in each hole as the blank is removed) and the Water FLUTe installation in all the boreholes. The advantages of the combinations The combination of the several methods, sometimes including various geophysical measurements, in a single fielding campaign can be very cost effective and provide a wide range of hydrologic information. The ability to consider the results from the measurements in all boreholes before selecting the monitoring intervals in each hole allows the best use of the resources without the need to make a snap judgment of the completion of each well as it is being drilled. With the transmissivity profiling results in hand, one can also select the minimum sections of the FACT activated carbon from each borehole for the relatively expensive analysis with the GCMS technique. The activated carbon felt can be stored in DI water with little concern about loss of contaminants for many days based on tests done by the Danish Technical University. The uncertainty of straddle packer seals in an open hole in fractured rock makes the dependence on those measurements problematic. This is especially true if the objective is to determine the depth of contamination in the formation. The uncertainty of the packer seal is also compounded by the time the borehole is open to cross connection during the straddle packer testing. The power point presentation “The Full Use of FLUTe Technology in Fractured Rock” describes the potential efficiencies of combinations of the flexible liner methods for a wide variety of hydrologic assessments. Combinations of FLUTe Methods SPACER

  • FLUTe - Blank Liner

    Sealing a Borehole with Blank Liners How FLUTe Liners Seal a Borehole ​ During the installation process (a process known as eversion), a small everted segment of the liner is placed within the well casing. Water is then added to the interior of the liner to create an annular pocket. The addition of water in the liner to a level above the head of the water in the formation created a driving pressure between the liner's internal pressure and the pressure beneath the liner. The pressure differential is maintained by the addition of water in the liner and thus, the liner continues to propagate down the borehole (Figure 1). ​ The driving pressure needed to evert the liner down the borehole mainly depends on the head of the formation. For high head or artesian conditions, differential pressure can be achieved by the addition of higher density muds to the interior of the liner. ​ As the liner everts, the liner displaces the borehole water into the formation and seals off fractures (Animation). ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Figure 1. Blank Liner Installation Animation 1. Blank liner eversion, displacing borehole water into the formation Figure 2. DNAPL Confined to an Isolated Fracture Figure 3. DNAPL spread to other fractures as a result of the newly drilled borehole acting as a flow path between otherwise unconnected fractures. Why seal a borehole with a FLUTe Liner? ​ Sealing a borehole after drilling prevents cross contamination. With traditional practice, the borehole is either left open for extended periods of time or as with packer testing, large portions of the borehole are left unsealed. During this time, contamination from one fracture can mobilize vertically within the borehole, adhere to the borehole pore space and flow into other fractures. The following diagrams show how cross connection occurs: Additional Reasons to Install Blank Liners: ​ 1. The liner seals the entire hole where it can be sealed as compared to multiple packers in boreholes. This is especially useful in karst formations. A packer must be placed in an aquitard to be fully effective. ​ 2. The flow in the formation is not perturbed by flow in the open hole. Therefore, measurements of various kinds, such as temperature distribution due to flow in the formation, are more realistic of the natural hydrologic state. ​ 3. Removal of the blank liner can enhance the borehole development as described in the paper Open Hole Well Development Problems . ​ 4. Stabilizing boreholes. The borehole is not likely to collapse on geophysical sondes which can "see" through the thin liner such as sonic tele-viewer, radiation logs, induction coupled electric logs, radar, etc. can traverse the borehole without concern about collapse of the borehole on the instrument. ​ 5. Liners are shipped on a small reel with no need of heavy equipment for the liner installation such as a drill rig or crane truck. The blank liner is easily installed by simply adding water to the interior of the liner. ​ 6. Liners are now used to tow instruments through the protected interior of the liner as the liner is being emplaced. ​ 7. Blank liners can be equipped with many special features for custom applications such as cure-in place liners, transparent liners, heaters on the tether, fiber optic sensors, insulation of various kinds as well as special fill materials like weighted mud, deionized water, sand, freezing fluids to stabilize the hole, etc. ​ 8. Liners can prevent the loss of annular sealing grouts outside a casing emplaced in karst formations. - a common problem with oil and gas casings. ​ 9. Liners can seal shallow portions of municipal wells preventing contaminants entering the well. An interior casing in place of the tether allows the pump emplacement to greater depths. A grout fill of the liner makes it a permanent seal. ​ 10. Salt water intrusion in the formation can be sensed with a deionized water fill of the liner and can be done without the hole perturbing the salt water front.

  • FLUTe - Head Profiling

    Reverse Head Profile The Reverse Head Profile is a technique developed by FLUTe for measuring the vertical head distribution in a borehole after completion of a FLUTe Transmissivity profile. ​ Click here for the Groundwater Journal 2016 Paper on the Method. ​ How does it work? The method involves the inversion (removal) of the blank liner in a stepwise fashion after the completion of a transmissivity profile. The blank liner is stopped between flow zones of interest as identified by the transmissivity profile. As the blank liner is inverted from the well, it uncovers discrete borehole intervals of interest that were sealed during the Transmissivity profile. A pressure transducer located beneath the liner in the borehole records the new steady state borehole equilibrium pressure, Bhi, after each interval is uncovered. As we already know the transmissivity of each interval and the previous steady state borehole equilibrium pressure, we can calculate the contribution of the newly uncovered borehole interval by using each new “blended head” beneath the liner and writing the flow equations for each increment that has been uncovered. We define the net flow into and out of the hole to be zero, and using the transmissivity, Ti, measured for each increment in the hole, one has only the formation head, FH as an unknown for each newly exposed interval of the hole. For the first open borehole interval beneath the liner: T1(Bh1-FH1) = 0 Hence the formation head, FH1, equals the blended head, Bh1, in the borehole. The transmissivity for each interval, Ti, is obtained from the continuous transmissivity integral (Fig. 1). Upon inverting the liner to uncover a second increment of the borehole: T1(Bh2-FH1) + T2(Bh2-FH2) = 0 Solving for FH2, FH2= [ T1(Bh2-FH1)+ T2 Bh2 ]/T2 Note that for each new position, a new blended head, Bhi, is measured. ​ ​ Figure 1. Continuous Transmissivity Integral ​ Solving for the formation head each time the liner is inverted allows theoretical determination of the head distribution in the formation while removing the same liner that was used to measure the transmissivity and to seal the borehole. The equation for solution of the formation head of the current interval, i, is: FHi = [ T1(Bhi-FH1) + T2(Bhi-FH2) + ……. +Ti Bhi ]/Ti Where Ti is the transmissivity of the ith interval in the hole determined from the liner continuous transmissivity profile, FHi is the calculated formation head of the ith interval, and Bhi is the blended head measured in the borehole after each new ith interval is uncovered. Watching the transducer measurement beneath the liner allows one to judge when a steady-state head has been achieved beneath the liner. ​ Results: Figure 2. Two Reverse Head Profiles conducted for a 30-Meter Borehole. The blue dots were measured from the 1st RHP values, while the black dots were measured during the 2nd RHP. Note that the vertical red line is the original blended head in the borehole and the red plot point at 30-Meters BGS denotes a measurement taken in a very low transmissive zone and therefore is a less reliable head calculation. ​

  • FLUTe - What Are FLUTe Liners?

    What are FLUTe Liners? FLUTe liners are flexible sleeves of impermeable nylon fabric that are closed on one end. When installed in a well and pressurized with air, water, or mud, the liners seal to the interior of a borehole. Liners can be made of many different strength fabrics and diameters ranging from 2" to 30"+. Liners can be installed in the overburden through sonic casing and direct push and in bedrock by eversion in open boreholes. ​ ​ Applications Seal Open Boreholes Multi-Level Groundwater Sampling Map NAPL Free Product Map Dissolved Phase NAPL Transmissivity Profiling Head Distribution Profiling Unique Applications

  • FLUTe - Liner Mechanics

    Liner Mechanics FLUTe liners are delivered to the site on a shipping reel with the liner wound inside out (see "Figure 1"). The open end of the liner is clamped to the wellhead and the liner is then pushed inside the casing a foot or so to create a small pocket. Water is then added to the pocket to a level above the water table of the formation, creating a driving pressure on the bottom end of the liner. The driving pressure (typically 5 to 10 feet of water pressure) allows the liner to propagate down the borehole (eversion), displacing the borehole water into open flow paths and seals the liner firmly to the borehole wall (see "Animation"). ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Figure 1. Liner on Shipping Reel Figure 2. Water Addition to the liner Animation: Liner Eversion The pressure exerted by the liner on the borehole wall is very strong and seals off all fracture flows in the borehole (see "Video"). ​ The driving pressure needed to evert the liner down the borehole mainly depends on the head of the formation. For high head or artesian conditions, differential pressure can be achieved by the addition of higher density muds to the interior of the liner or by the use of stand pipes and elevated platforms during installation. ​ Video: Liner Sealing Quality Video ​

  • FLUTe - Frequently Asked Questions

    FLUTe Frequently Asked Questions Blank Liner FACT NAPL FLUTe Transmissivity Profile Water FLUTe SPACER SPACER

  • FLUTe - Contact

    Contact Us Today To Learn More About FLUTe FLUTe Headquarters and Manufacturing Facility 1091 NM-68 Alcalde, NM 87511 Contact Number: (505) 852 0128 FLUTe East Coast Field Office 835 Nina Way Warminster, PA 18974 Contact Number: (215) 394-5760 FLUTe Albuquerque Field Office 2412 Princeton Drive NE Albuquerque, NM 87107 Contact Number: (505)-883-4032

  • TECHNICAL PROCEDURES | FLUTe

    Blank Liner Procedures ​ Blank liner installation procedures Whereas FLUTe personnel are most experienced in the installation of blank liners, it has become more common for our customers to install their own blank liners. This is especially convenient for installing sealing liners immediately after a borehole is completed and preferably after the borehole has been well developed, if the natural flow paths in the formation are important to the use of the borehole. Many drilling companies have now gained experience with FLUTe blank liner installations and removals. However, not everyone in each drilling company has the same amount of training and experience. It is important to assure that an experienced individual will be doing the installation or removal. Blank Liner Installation Information: Blank Liner Installation Procedure How Deeply Must a liner be Installed in a Borehole? Maximum Liner Tension and Pressure Limits FLUTe has developed a 55 minute video teaching the proper blank liner installation and removal procedures using FLUTe’s ancillary equipment. A blank liner can be installed directly from the shipping reel, but it requires special care and equipment to remove a blank liner. For a copy of the video, please contact us. If preferred, FLUTe can provide assistance with the installation and removal of blank liners. If there are any uncertainties about an installation or removal, FLUTe should be contacted for guidance. Blank liner use with other borehole measurements It is often convenient for all the boreholes to be completed and sealed with a liner before the geophysical, or other, measurements are performed. A common practice is to complete the drilling and sealing of all the boreholes and to then invite FLUTe to remove a liner for the geophysical measurements while FLUTe then removes a second liner. Then the geophysics crew moves to the second hole while FLUTe preforms the reinstallation of the first liner with a transmissivity profile measurement. FLUTe then removes the third liner, and then reinstalls the second liner, etc... In this manner, both the FLUTe transmissivity profiles and geophysical measurements are done in one mobilization with substantial cost savings. It has been found that the blank liner removal can be helpful to the better development of the borehole. Click here for a number of solutions to risky open borehole development. Another alternative is for the geophysics, and perhaps packer testing, to be done before the borehole is sealed with a liner, but in that case, the boreholes are open longer for cross connecting flow. The above procedures do not conveniently allow for packer testing. If a multi-level system is to be installed, packer testing for contaminant assessment may not be necessary and the time the borehole is open is minimized. ​ ​

  • FLUTe - Unique Applications

    ​ In one sense, all FLUTe applications are unique in that these methods did not exist before 1989. However, some methods have become so commonly used that they are no longer unfamiliar. Those common methods are: 1. Blank liners for sealing boreholes. 2. Transmissivity profiles of open boreholes for rapid high resolution measurements. 3. Water FLUTe installations for multi-level water samples and head measurements. 4. NAPL FLUTe installations to map LNAPL and DNAPL of many kinds. There have been extensions of these methods to smaller diameter holes, more artesian holes, and deeper holes. However, these are variations on the FLUTe systems commonly used. ​ The following descriptions are of applications of FLUTe methods not so widely used and perhaps not known to many FLUTe users. Some are applications that should be used more frequently because of the advantages. Unique Applications Installations with Artesian Conditions In the early days of FLUTe methods, if the water table was very shallow or the well somewhat artesian, a heavy mud was used instead of water to pressurize the liner after it had been installed. The installation was usually done off of a scaffold to obtain a sufficient excess driving head to evert the liner. However, FLUTe has developed several designs, with patents pending, which allowed the installation of everting liners into boreholes with 20 ft of artesian head and flow rates out the top of the casing of 100-150 gal/min. Very good transmissivity profiles have been obtained in such holes. Such extreme artesian conditions often lead to a final liner fill of a bentonite/cement grout for a long term Water FLUTe installation. The liner is not then removable as are other FLUTe installations. ​ Installations in Karst Terrain Installations in karst boreholes of many kinds for many purposes are drilled into karst formations. The boreholes are difficult to seal and therefore isolating sampling intervals, grouting of casing, and other common functions are more difficult to nearly impossible in karst. The continuous lining capability of FLUTe systems without the use of grout makes those difficulties much less of a concern. Sealing casing strings in karst formations Grouting the annulus can be very expensive in karstic limestone because large quantities of expensive grout are sometimes lost to the karst solution channels. Loss of returns while drilling is further evidence of the problem. The grout seal can be compromised by the loss of grout into the formation and subsequent leakage from the lower production zone to upper aquifers. The mixing of mud, which is used to support the borehole wall with the grout injected to seal the annular space between the casing and formation, can lead to a weak and permeable seal in the annulus. The annular grout can mix with formation fluids to degrade its in-situ chemistry and strength. A high pressure gradient on a grout column during curing may also lead to a porous and permeable grout. This difficulty can be encountered in water wells, oil wells, or “fracking” wells. A high strength, flexible FLUTe liner can be installed prior to or during the insertion of the casing, eliminating the above difficulties. The annulus can be grouted through a trimmie pipe in stages in order to not burst the liner with a high pressure grout column and without any loss of grout to the formation or mixing with the borehole fluids. This is done routinely in the installation of FLUTe liners in ground water investigations. The formation fluids and drilling muds are forced out of the borehole by the everting liner prior to the grout injection between the liner and the casing or the mud can also be pumped from beneath the liner during the liner installation. The neighboring drawing is a visual representation of the procedure. ​ Well Development It has been observed that the removal of a flexible liner draws down the head beneath the liner by as much as 100 feet, especially near the bottom of the hole. That low pressure beneath the liner as it is being removed tends to extract mud and cuttings from fractures that may not otherwise be cleared in the normal well development procedures. This process and an explanation of why boreholes may not otherwise be well developed is described in the conference presentation titled: “Open Hole Well Development Problems and Solutions” in the publications section. Injection of Remediation Fluids Some FLUTe liners have been fitted with tubing much like that of a Water FLUTe but without any check valves and usually with larger diameter tubing than that used in the Water FLUTe sampling system. The tubing is then used to inject remediation fluids into discrete intervals. In some cases, some of the intervals are used for monitoring the arrival of remediation fluids. Special liners of more resistant fabrics than the standard nylon liner have been used to avoid damage by the fluids injected. For information on those designs, contact us. Liner augmentation of horizontal drilling (LAHD) Flexible liners were first tested in augmentation of horizontal drilling in Mustang, OK in 1997. The method is described in the publication LAHD presentation 2002 which describes the first commercial application of the method to emplace sampling intervals under a landfill in Indianapolis, IN. The basic advantage of the technique is that it replaced the mud cake of a horizontal drill hole with a flexible liner which liner can also carry a variety of instruments into position beneath buildings, highways, and landfills. The method has not been extensively used primarily because FLUTe has not advertised the option. Landfill monitoring in a prefabricated layered subsurface Many current landfill monitoring designs either monitor the landfill within the containment system (e.g., a leachate collection layer between the first and second liner) or outside the containment system in the ground water. For landfills located above deep vadose zones, a major leak will not be detected until a large portion of the vadose zone is contaminated if the monitoring system is ground water wells. FLUTe has designed a landfill monitoring design which has a much higher probability of detection of a leak early in the leak history. The same system provides many other a dvantages such as measurement of the leak rate, sampling the leak for composition, and even the remedy of the leak as part of the monitoring design. That system monitors the entire plane beneath the landfill outside of the landfill liners and does not include instruments which can fail in time so as to lose their monitoring capability. The design is described in the papers provided in the publications section under landfill monitoring . Monitoring beneath a landfill in vertical wells In some situations, the monitoring beneath a landfill or building is preferred in vertical wells. The ability of a propagating liner to travel horizontally and through turns in the piping was used in one situation and is planned for another. The first situation was in a brown field with an existing set of wells. A very large building was to be constructed on the site and it was desired to continue a soil vapor extraction remediation and monitoring of the same wells beneath the building. It was not desirable to have the vertical wells protrude through the floor of the building. In order to obtain water samples and make head measurements beneath the building, horizontal piping was installed in trenches beneath the building which ran from a vault outside the building, through various turns, to sweep elbows connecting to the vertical wells. FLUTe single sampling port systems were installed in the horizontal piping for distances of several hundred feet. The piping was 3 and 4 inch diameter with sweep elbows in the turns. In a more recent design, larger horizontal piping is to be installed beneath a landfill as it is being constructed to allow access to vertical wells beneath the landfill with multiple sampling intervals. Details of the horizontal path to vertical wells for monitoring are provided in the white paper “FLUTe Wells Under Landfills and Buildings” . FLUTe has numerical models which predict the driving pressure needed to overcome drag, gravity, and turn angles for tortuous passages of specified geometry and liner assemblies of various characteristics such as weight, length, friction coefficient and diameter of liner. The models have been well tested against actual installations (see "Installations in tortuous passages" in this section). These installations are easier than the installations in horizontal drill holes as the hole is being drilled in the liner augmentation of horizontal drilling used beneath existing landfills. Landfill monitoring in vertical wells down gradient Many current landfills have common water wells down gradient from the landfill for the purpose of monitoring leachate leakage from the landfill. Obviously, the more closely spaced the wells and the varied the depths of the wells, the greater the probability that the well system can intercept a leachate leak. However, the installation of many traditional screened wells is very expensive to construct and to sample. A more practical approach is to use multi-level sampling systems and to purge them sufficiently to develop a large draw down to capture even a long slender leachate plume. This requires multi-level sampling systems which can produce large purge volumes to draw ground water from a significant distance from the well. The Water FLUTe systems are well suited for that application in that the several sampling intervals can be purged simultaneously and produce a gallon or more per stroke of the system for each port. This allows realistic purge volumes as large as 55 gallons. Water FLUTes can be constructed with even larger production per stroke of each pumping system. The ability to purge all the sampling intervals simultaneously is due to the unique FLUTe design which has each pumping system at the same depth independent of the elevation of the sampling intervals. The ability to obtain a large volume per stroke is because the entire hole volume inside the liner is available for relatively large diameter tubing. The sealing liner occupies an insignificant portion of the hole volume. See the Water FLUTe sampling procedure for a more detailed description of the system. Mapping of subsurface flow One technique for doing that uses a transparent borehole flexible liner to observe in time the arrival of dyes or remediation fluids such as potassium permanganate injected into the formation in a nearby borehole. There are a number of interesting options for monitoring tracer arrivals with the Water FLUTe system which is well suited to monitor for both pressure changes or for tracer arrivals. The tracer arrivals are particularly easy since all the sampling systems can be short stroked simultaneously to “sip” on the medium with minimal perturbation of the natural flow state. The continuously sealed hole also makes the monitoring hole a minimum perturbation on the flow field. ​ Leak detection FLUTe has a patented method which employs an advancing and a retreating liner (one everting, the other inverting) with a constant sampling interval between them. This allows, for example, a vacuum to be applied to the interval to extract any gas or liquid flowing through the hole wall or pipe wall into the interval between the two liners. The method is called “a progressive packer”. The advantages are several in that the liner travel is very gentle while providing an excellent isolation of the traveling interval from the rest of the borehole or pipe. Logging of boreholes The description of geophysical applications treats the method of towing longing sondes through open passages while the passage is supported and sealed with a blank propagating liner. This is especially attractive for sondes such as neutron moisture measurements. However, many kinds of sondes can be towed into passages that are relatively unstable or flowing fluids with minimal risk of loss of the tool. In other situations, contaminants in the borehole, such as coal tar, are incompatible with many sondes and the liner protects the sonde from contact with those fluids. See the Geophysical applications PDF for sondes that can “see” through the liner. ​ Other uses for lining of piping and boreholes FLUTe has in the past installed cure-in-place liners, such as resin soaked carbon fiber liners, in tortuous passages from the basement 100 ft upward to the roof gutters of the Smithsonian Museum of Natural History. The purpose was to line and seal rotting cast iron piping. Those applications are not common for FLUTe, but do use the special art and science of flexible liners as developed by FLUTe and the unique ancillary equipment of FLUTe design. A much more common need is for deep boreholes drilled through karstic formations (e.g., oil and gas wells) to prevent the loss of the grout seal between the casing and the borehole wall. In karst formations, the sealing grout flows freely into the solution channels and caverns and prevents a high quality seal of the annulus which allows potential vertical leakage of brines, petroleum or gas into overlying potable aquifers. FLUTe has a design whereby the borehole is lined as the casing is being installed to prevent the loss of the sealing grout into the formation. Contact us for details. Installations in tortuous passages The ability to install a flexible liner by eversion into tortuous passages is particularly useful for the landfill monitoring, geophysical applications, relining of piping and other applications. The fact that the liner also seals the passage is an additional advantage as well as the ability to support the hole wall as a pressurized liner. This combination of characteristics allows many other applications and the customer is invited to consider these characteristics as they may be applied in novel applications. A video is available of a test of the FLUTe calculation model of liner propagation around numerous turns. The test showed excellent agreement with FLUTe’s model which was used to judge the feasibility of installations such as in the pipes in the walls of the Smithsonian. Installations in lakes and ponds and other uses Liners do not need a borehole or pipe to guide the eversion process. A liner can be everted across a cafeteria floor with many chair and table leg obstacles. The everting liner tends to deflect past such obstacles. It is also interesting that an air filled liner can be everted across a lake. A chain attached inside the liner can keep it oriented with a designated top side. In the same manner, a water filled liner with appropriate weighting can propagate across the bottom of a pond. The liners can be fitted with many kinds of instruments for sample collection, temperature measurements, etc…, in these applications. It is also interesting that a pressurized liner can be everted unsupported through the air for significant distances. The Geophysical applications presentation shows examples of that kind of propagation for small (2” diam.) liners. With reasonable guy lines built into the liners, a tower formed by an everting liner can be erected in a few minutes to 50-100 ft. from a small pressure canister. Liners filled with special fluids can be propagated for long distances for interesting uses. FLUTe has proposed the use of everting liners to quickly lay water lines for fighting forest fire. Contact us to discuss any novel applications. We may have already done it. Video: Pressurized liner eversion through a series of pipe bends SPACER

bottom of page