top of page

Search Results

34 results found with an empty search

  • FLUTe - Contact

    Have a question? Need FLUTe environmental solutions? Send us an email using our form and we'll get back to you shortly. Contact Us Today To Learn More About FLUTe FLUTe Headquarters and Manufacturing Facility 1091 NM-68 Alcalde, NM 87511 Contact Number: (505) 852 0128 FLUTe East Coast Field Office 835 Nina Way Warminster, PA 18974 Contact Number: (215) 394-5760 FLUTe Albuquerque Field Office 2412 Princeton Drive NE Albuquerque, NM 87107 Contact Number: (505)-883-4032

  • Flexible Liner Underground Technologies | New Mexico

    Flexible Liner Underground Technologies: Sealing Bedrock Boreholes - Fractured Bedrock Characterization - Multilevel Groundwater Monitoring Systems - Multilevel Groundwater Sampling System Innovative Flexible Liners for High Resolution Hydrogeologic Characterization Sealing Boreholes Blank FLUTe Liner Mapping NAPL Bedrock Characteristics Transmissivity Profiling Reverse Head Profiling Multi Level Groundwater Sampling Water FLUTe Shallow Water FLUTe Click Here for the Full List of FLUTe Methods and Products Get The Definitive FLUTe Manual At Amazon AdsP2p Watch the Video Below To Learn More! © 2022 by FLUTe

  • FLUTe - Ancillary Equiment

    Ancillary Equipment The Green Machine The green machine is a name given to a system for removal of liners of several kinds using a wellhead roller and manual winch system. The green machine shown is positioned over the wellhead with the tether routed over the large roller, under a guide roller, to a manual winch capstan. The liner is inverted from the borehole until the tether attachment to the liner is reached. At that point, a kellum grip is attached to the liner and the removal is continued by routing the tether to a distant, well anchored snatch block and back to the winch on the green machine. This procedure is described in detail in a video teaching the installation and removal of blank liners. Contact FLUTe for access to the video. The green machine is frequently equipped with a load cell to monitor the tension being applied to the liner. However, if the force on the winch handle is not excessive, the tension on the liner system will not be excessive. The Linear Capstan The linear capstan is the FLUTe name for a motorized version of green machine. The machine shown in the photo is driven by a variable speed motor. The tether or liner is routed over the first two rollers, and then alternates under and over through the series of rollers. The friction on the several roller allows the motor to invert the liner from the borehole. The rollers are driven by a suitably routed chain such that the rollers all turn in the correct direction. This unique FLUTe machine can remove a liner with much less effort than the green machine with a modest tension on the liner beyond the machine. The tension is monitored with a pair of load cells. The motor speed, and therefore the tension on the liner, are adjusted and monitored with a separate controller. This machine is usually used by FLUTe personnel, but some units have been sold to customers with training in the use and maintenance. Bubbler Monitor The water level in the liner during installation should be monitored with a water level measurement for deep water tables. For shallow water tables, the water level can often be maintained at the top of the casing. But for deep water tables, the water level should not be above ~20 ft higher than the water table in the formation. Monitoring the water level with the standard electric water level meter is frustrating due to the water being added to the liner as it descends. Therefore, an open tube, called a bubbler tube, is included in a sleeve of the standard liner to the water table. Connecting a controlled constant air flow source to the tube and monitoring the pressure variations as the water level rises in the liner allows easy control of a safe water level in the liner. That bubbler monitoring system can be purchased from FLUTe. The monitor must be connected to a gas bottle or compressor. The controller contains a flow meter and pressure gauge with a connection to the automatic data collection system if used with the profiling machine. The controller is usually used by FLUTe, but can be purchased. The Profiling Machine The transmissivity profile is performed with a unique FLUTe device called a profiling machine or Profiler. The Profiler controls the tension on the liner to be essentially constant and measures the depth and velocity of the liner propagation. The Profiler also measures the tension on the liner. This device, to date, has always been used only by trained FLUTe personnel. However, an “export model” has been designed and is being built for those distant locations where shipping and tariffs are prohibitively expensive and travel of FLUTe personnel to the site is also costly. This machine will be available to foreign users with the training for operation by FLUTe personnel. Since that training is extensive, the expense of a profiling machine is not practical for sites more proximate to FLUTe offices. FLUTe has many US and foreign patents on this method. The Pressure Canisters The pressure canister is use to evert liners into boreholes or tortuous passages with air as the driving fluid. This is most commonly the case for vadose systems or propagation of liners upward into drill holes from tunnels or into piping in buildings or landfills. The liner is loaded onto on interior reel and everted by air pressure supplied to the canister and thence into the liner. The canister size needed depends upon the size of the liner. These canisters are manufactured in various diameters of 1.5, 2, 3, and 4 ft. While not often sold, some sizes are available for purchase. The canister is especially useful for inverting a liner from inside-out to right-side-out. These canisters are used extensively in the fabrication of liners. Shipping Reel Braking System For very deep water tables and for large tubing bundles associated with many ports on a Water FLUTe system, the hanging load of the liner being installed into the borehole can exceed several hundred pounds. In order to control the descent of the liner and to support the large hanging load, a braking system has been designed, and used, which attaches to the shipping real on the reel stand. The braking system allows an easy and safe control of the liner descent with a disk brake and also monitors the tension on the liner by measurement of the torque on the reel. This device is not sold, but it is often rented for the installation of large liner systems where the control of the brake is required. This device is also necessary if there is a large downward gradient in the formation which is pulling the liner into the borehole with high tension. The ACT (Air Coupled Transducer) System Whereas the ACT system is usually sold as part of a Water FLUTe system, the ability to measure the fluid level continuously through a slender tube (e.g., 1/8” OD) has uses in other situations. The ACT system consists of a simple tube lowered below the water table, or other fluid level, with a sensitive transducer connected to the top of the tube. As the water level changes in the tube, the pressure measured in the tube also changes. From that pressure data and the temperature measured in the transducer, the history of the fluid level can be deduced with surprising accuracy. The test in a pumped domestic well with abrupt drops and recoveries of the fluid level showed the monitoring of a water table at a depth of 48 ft to be accurate within ¼” on the 1 second time scale. With different tubing geometries, the resolution will be different. The advantage of the ACT system employed in the Water FLUTe system is that the transducers are easily accessible at the surface for repair, replacement or reuse. This system can also be used where other deep installations of transducers are usually needed in confined circumstances. It also allows level measurements in tubing that is already in place for other purposes. FLUTe provides the software for converting the pressure and temperature measured to level changes. This method is not to be confused with the common bubbler system described above. ThIs system is available for the list price of the recording transducer and tubing. FLUTe has US and foreign patents on this method.

  • FLUTe - NAPL FLUTe

    The NAPL FLUTe is a NAPL reactive FLUTe liner that stains when in contact with NAPL in the borehole. Simple and cost effective method for NAPL Delineation in Soil and Bedrock Wells. NAPL FLUTe The NAPL FLUTe system is a reactive cover for the blank FLUTe liner which addresses the problem of locating NAPL free product in the formation. NAPL FLUTes Can Be Installed in the Overburden and Bedrock Via the Following Methods Eversion in Bedrock Wells: The NAPL FLUTe is everted into the borehole on the outside of a blank FLUTe liner. For a detailed PDF on the NAPL FLUTe installation description, click here . Direct Push Installation (As seen in video above): The NAPL FLUTe is compression-wrapped and installed within Geoprobe rods once the terminal depth is reached. The NAPL FLUTe has a tube for water addition, and as water is added to the interior of the liner, the rods are removed in a stepwise fashion. A tether at the surface allows you to pull the liner out of the hole once the reaction time has finished. For a detailed PDF on the installation sequence, click here . How Does the NAPL FLUTe Work? As the liner everts down the borehole, the NAPL FLUTe is hydrophobic. It quickly wicks any NAPL contacted in the fractures or pore space into the cover. When the free product contacts the interior of the NAPL FLUTe, it quickly creates a stain on the cover and dissolved the multi-colored dye stripes. After a short period of time, the NAPL FLUTe and blank liner are removed from the well and the depth of the free product is located by measuring the stain depth with a tape measure. The inverted cover can be placed next to a tape measure to allow the stains to be photographed with the indicated depth in the borehole. The cover can be rolled for storage, but the stains may fade with long exposure. The dye stains are more durable. The oil-on-paper-like stains will disappear. Some of the common stains are shown in the photos on this page. NAPL FLUTe Reactions with Different Contaminants: Different contaminants react differently with the dye stripes located on the outside of the NAPL FLUTe. For a list of tested compounds, click here . Contact with NAPLs such as TCE and PCE dissolves the dye stripes and carries the dye to the interior surface of the cover. The cover material is white and the displacement of the dye to the interior surface. That stain is the indication that the cover has come in contact with a NAPL. The size and location of the stain are indicative of the amount of NAPL present and the nature of the source. Some NAPL materials such as coal tar and creosote are naturally dark colored. When those materials are wicked into the covering, the dark stain appears on both the inside and outside surface of the cover. Other NAPLs such as gasoline and similarly less aggressive solvents will also displace the dye stripes to the inside of the thin cover. Other NAPLs such as coal oil do not displace the dye stripes. However, when absorbed by the cover material, those NAPLs produce a translucent appearance of the cover much like an oil stain on paper. The cover does not absorb water. The cover only reacts to the pure product of the NAPL and does not provide a significant stain if exposed to the dissolved phase. However, the dissolved phase of chlorinated solvents, for long periods, will cause the dye stripes to bleed or produce a light pink cast due to the red stripes. Those stains are not as obvious as the contact with the NAPL. Mapping the Dissolved Phase : FLUTe has a technique called FACT (FLUTe Activated Carbon Technique) which does respond to the dissolved phase of many contaminants. A common practice is to combine the FACT with the NAPL FLUTe cover to map both the NAPL and the distribution of the dissolved phase.

  • FLUTe - Publications

    A list of publicized works and presentations authored by FLUTe Founder, Carl Keller. Publications Get The Definitive FLUTe Manual At Amazon M o st Recent FLUTe prices after Sept 21 2023.xlsx The applications of the Cased Hole Sa mpler and it vari ations 9- 3-18 The FLUTe Cased Hole Sampler 8-24-18 New FLUTe Discrete Extraction Injection Liner 6-28-18 Advantages of Simultaneous Purging and Sampling-May 2018 Assessment of Packer Utility at EPA Region 2 - December 2017 FACT Method for a Continuous Contaminant Profile Presentation - NGWA October 2017 Advances in High Resolution Hydrologic Measurements - AIPG September 2017 A New Rapid Method for Measuring the Vertical Head Profile-Groundwater Journal 2016 General AIPG-IH paper on FLUTe methods FLUTe Quintet of GW methods FLUTe technology summary Open Hole Well Development Problems and Solutions Why are FLUTe liners useful for karst Preferred Boreholes for FLUTe Liners The Full Use of FLUTe Technology in Fractured rock Maximum Tension and Pressure Limits on Liners Blank Liners Sealing a Borehole with a Blank Liner How deeply must a FLUTe blank liner be installed The FLUTe Blank liner FACT FACT Method for a Continuous Contaminant Profile Presentation - NGWA October 2017 The FLUTe FACT Technique - Monique Beyer FACT thesis DTU High Resolution Hydraulic Profiling and Groundwater Sampling The Analysis of the FACT NAPL FLUTe NAPL FLUTe presentation NAPLs and DNAPLs that react with the NAPL FLUTe systems Sonic Core NAPL FLUTe Procedure Transmissivity Profiles FLUTe profiling poster Battelle FLUTe profiling tech. NGWA-EPA Maine Conference GSA paper comparing FLUTe profiler to straddle packers Keller et al_2013_Ground Water Journal Liners and Packers Similarities and Differences NGWA Paper Liners and Packers similarities and differences Portland ME NGWA presentation on FLUTe Hydraulic Conductivity Profiler Practical Use of Flexible Liner Transmissivity Profiling Results Why and How FLUTe corrects the transient in Transmissivity profiles Head Profiles A New Rapid Method for Measuring the Vertical Head Profile-Groundwater Journal 2016 Head Profiles Using a Liner Advances in the Reverse Head Profiling Technique Reverse Head Profiling Method Water FLUTe and Shallow Water FLUTe The Water FLUTe System Cherry Parker Keller Water FLUTe NGWA GWMR Journal Evolution of FLUTe Multi-level System FLUTe air coupled transducer method Unique Water FLUTe characteristics Use of Pressure Transducers with Water FLUTe system Water FLUTe sampling procedure. after May 2009 Water FLUTe sampling procedure. before May 2009 Shallow Water FLUTe Systems Subsurface vault dimensions for Water FLUTe Vadose FLUTe Keller and Travis paper on absorber utility Vadose FLUTe description Karst Applications Karst Problems and Flexible Liner Experience Why are liners useful for karst Grouting of casing in Karst with a borehole liner Landfill Monitoring 1996 GSA Austin Invited paper on Landfill design FLUTe Wells Under Landfills and Buildings How well can landfills be monitored Geophysical Applications Flexible Liner Applications to Geophysical Measurements Liner Augmentation of Horizontal Drilling LAHD presentation

  • FLUTe - Transmissivity Profiling

    The FLUTe Transmissivity Profile identifies bedrock flow paths/fractures and measures transmissivity at 6" to 12" scale. ​ At the start of the profile, the flowrate calculated is of the entire borehole. As the liner seals off flow paths, the borehole flowrate is reduced. The depths in the borehole, which exhibit..... Transmissivity Profiling FLUTe Transmissivity profiles quickly measure all significant flow paths in a borehole with 6 to 12" resolution in as little as a few hours How Does it Work? As a blank liner is installed and everts down the borehole, the water in the borehole is forced into the formation by whatever flow paths are available (e.g. fractures, permeable beds, solution channels, etc.). Figure 1 is a drawing of a simple everting liner with three additional features, (1) The FLUTe Profilier at the wellhead which measures the liner velocity and additional parameters which can influence the velocity of the liner descent, (2) the pressure transducer measures the excess head in the liner which is driving the liner down the hole, and (3) a pressure transducer measuring the head beneath the liner. From these features, all factors controlling the eversion rate of the liner are monitored. The liner descent rate (measured by the FLUTe Profiler) is therefore controlled by the rate at which water can flow from the hole via those flow paths. The everting liner is somewhat like a perfectly fitting piston sliding down the hole, except the liner doesn't slide in the hole, it grows in length at the bottom end of the dilated liner at the "eversion point" as we call it. As the liner everts, it covers the flow paths sequentially. When the liner begins its descent in the hole, all of the flow paths are open and the descent rate is at its highest. As the liner seals off flow paths, the rate that the borehole water can be displaced out of the borehole decreases and therefore, the liner descent rate decreases as well. A monotonically fit velocity profile is produced that measures changes in liner descent velocity with depth (Figure 2). The velocity multiplied by the borehole cross sectional area (refined by a caliper log) is the flowrate of the borehole at each interval (Figure 3). At the start of the profile, the flowrate calculated is of the entire borehole. As the liner seals off flow paths, the borehole flowrate is reduced. The depths in the borehole, which exhibit a decrease in flowrate, identify the location of flow paths and the magnitude of the change is the measure of the flow rate. From the flow rate profile, one can calculate a transmissivity profile for the borehole using the Thiem equation (Figure 4). FLUTe has performed hundreds of these profiles in boreholes to depths of 1000 feet. These boreholes were 3" to 12" in diameter. Publications and professional papers comparing the results to straddle packers can be downloaded on our publications page. In most cases, the FLUTe Transmissivity Profiler™ can map all of the significant flow paths in the hole in a few hours (10 percent of the time required to do the same mapping with a straddle packer). Furthermore, the detail (6" to 12" resolution) in the FLUTe Profiler measurement is not even possible with straddle packers. The direct measurement of the flow paths with the Profiler may also reduce the need for those geophysical measurements which are used to deduce possible flow path locations in a borehole. Another advantage is that the blank liner is often installed to seal the hole against vertical contaminant migration. When used in conjuncture with the FLUTe FACT method, the contaminant distribution can also be mapped using the same blank liner (Figure 5). This data can be used with the Transmissivity profile to develop a fate/transport CSM as well as design a multi-level sampling system (See Water FLUTe ). Given the continuous transmissivity profile, the head profile can be determined by removing the liner in a stepwise fashion using a technique described at head profile. Figure 1. Transmissivity Profiling Setup Figure 2. Velocity Profile Figure 3. Calculation of the flowrate Q from the velocity change of the liner Figure 4. Flow Rate Profile and Transmissivity Profiles. Figure 5. Transmissivity Profile and FACT data. Note the high TCE concentrations at 112' and 140' BGS in very low transmissive fractures compared to low TCE concentrations in high flowing fractures at 90' and 130'. The TCE concentrations at 140' and 112' are the same or twice as high, respectively, as the highest flowing fracture in the borehole at 130' despite the fact that they are two of the lowest flowing fractures in the borehole. This data emphasizes the need for high resolution methods rather than coarse measurements, to assure that all significant contaminant source zones are properly identified during characterization. Water Samples (green diamonds), validate the FACT concentrations.

  • FLUTe - Multilevel Vadose Monitoring

    VADOSE FLUTe Figure 1. Vadose FLUTe Design System Design: The sampling geometry is shown in Figure 1. The spacer material on the outside of the liner serves to define the interval of the hole from which the sample will be drawn. As the pressure is reduced in the sampling tube at the surface, the pressure is reduced in the spacer material interstices. This low pressure draws pore gas into the spacer and hence into the tube to the surface via the port through the liner. If the spacer is relatively short, the pressure field near the spacer is essentially a spherical 1-D flow field centered on the spacer. For longer spacers, the flow field is more like a 1-D cylindrical flow field. The assumption for both geometries is that the medium is homogeneous and i sotropic. As more pore gas is removed from the spacer, the larger is the volume from which the sample is drawn in the formation. Typically, the tube volume is purged of its gas and the sample is collected thereafter. Because the tubing is gathered in interior sleeves of the liner, it is relatively easy to emplace many sampling ports in the hole. Transducers can be attached at the surface to the sample tubes to monitor the pore pressure history at each port. This is useful for design of a soil vapor extraction remediation system. These systems are particularly useful for monitoring of gas flow near landfills in the vadose zone. System Installation: Several kinds of installation procedures are used. In most cases, the liner is everted into the hole . For other situations, the liner is lowered into the hole, as when the hole is supported by a temporary casing, and then filled with sand as the casing is withdrawn. In all cases, the flexible liner provides a seal against the hole wall. FLUTe gas sampling systems are often installed in driven casing systems to hundreds of feet and filled with sand upon the withdrawal of the casing. Figure 2. Air canister Installation ABSORBER INSTALLATIONS ON A LINER The drawing shows how segments of absorbers attached to the liner are rolled out against the hole wall. A variety of absorbent coverings have been used. Some were only short, annular surrounds on the liner, attached to the liner with buttons. Others were patches of absorbent material. The most common is a continuous covering with wicking barriers of coarse, nonabsorbent material dividing the tubular absorber into short segments. The wicking barriers prevent the absorber from transporting contaminants very far along the hole. In that way, each section is a local sample of the available pore liquids. In many cases, the absorbers become quite wet. As the liner is inverted from the hole, the absorbent material is rolled to the interior of the inverting liner. This prevents the absorber from contacting the hole wall at any location other than where it was initially placed. The absorber travels to the surface, well protected inside the inverted liner. At the surface, the liner is often everted into a long, flat, tubular sleeve of plastic film. The absorber is then disconnected from the end of the liner. The liner is then inverted from out of the absorber. The absorbent covering is left flat in the tubular film, with little or no contact with the air. Elastic bands can then be wrapped on the tubular plastic to form "sausage-link-like sections" of absorber sealed in plastic for analysis. If the contaminant was colored, it can be easily seen staining a white absorber. If the contaminant is radioactive, it can be scanned for a profile of the activity in the hole. The NAPL FLUTe system of color reactive mapping of NAPLs is a special kind of absorber. Another useful absorber system is the FACT (FLUTe Activated Carbon Technique) which contains an activated carbon felt for wicking, by diffusion, contaminants from the pore space of the formation in both the vadose and saturated zones. The absorbent covering is most easily emplaced in the vadose zone in a stable hole. Air or water can be used as the pressurizing fluid. If a liquid is used, it should be tagged with a tracer/dye to assure that if any is absorbed in the cover, it is not mistaken for a pore liquid. As with other everting liners, absorber liners can be everted into passages in any direction, even vertically upward and around bends. Absorber FLUTe systems have been installed, using the duet technique, in a hole already sealed and supported by another liner (e.g., a 4 in. absorber liner installed into a hole sealed by a 6 in. liner). In most cases, the first larger liner was a Vadose FLUTe in use for gas sampling. Some absorbent covers have been instrumented with wire pairs, like a gypsum block, to monitor the resistance change with water absorption to identify the passage of wetting fronts or to determine when the absorber has reached equilibrium saturation prior to removal. The absorber collection of vadose pore liquids has been done the most by Lawrence Livermore National Laboratory since 1991. Carl Keller and Brian Travis wrote a paper on the utility of absorber collection of vadose fluids. Comparisons of laboratory measurements were made with vadose flow model calculations for a variety of saturations and materials. That paper is in the proceedings of the NGWA 7th Outdoor Action Conference in Las Vegas, 1993. With the use of well characterized absorbers, the weight gain of the absorber can be an indirect measure of the capillary tension of the formation. Some vadose systems pressurized with a small air pump powered by a solar panel have been in use for many years.

  • FLUTe - Combination of Methods

    While FLUTe’s many methods are useful when used independently of one another, when coupled together, they offer a cost effective and thorough characterization of sub surface environmental and geologic conditions including the following: 1. Absence/presence and location of free product 2. Distribution of dissolved phase contaminants 3. Transmissivity and H ead distributions 4. Groundwater Sampling Systems The Blank liner, NAPL FLUTe and FACT A common question is “where is the contaminant?” This combination uses the Blank liner covered with the color reactive NAPL detection covering (NAPL FLUTe) plus the activated carbon felt strip (FACT) for wicking the dissolved phase of a variety of contaminants. The covered liner is installed immediately after the borehole is drilled to prevent cross connection. Two weeks later, the liner is removed. Any stains on the cover are photographed with an adjacent tape measure to locate NAPL sources. The FACT carbon felt is cut from the cover, rolled, and stored in DI water for future assessment as desired for identification of the dissolved contaminants. The blank liner is immediately installed back into the borehole to seal against cross contamination. Sometimes, geophysical measurements are made in the open hole before the liner is reinstalled. Whereas the NAPL FLUTe system can be installed without the FACT, the FACT system is always installed in the NAPL FLUTe cover. The Blank liner, NAPL FLUTe, FACT and Transmissivity profile This is the same as the above sequence, but when the blank liner is reinstalled, it is done while performing the high resolution transmissivity profile of the formation. When completed, the borehole is sealed. Sometimes, geophysical measurements are made in the open borehole before the liner is reinstalled. The transmissivity profile is very helpful in detection of the active flow zones in the formation and in guiding the selection of sections of the FACT to be analyzed. The Blank liner, NAPL FLUTe, FACT, transmissivity profile, and Water FLUTe This is the same as the above measurements followed by the construction of the Water FLUTe multi-level system. The blank liner is then removed and the Water FLUTe liner is installed in the same day for water quality and head measurements. In some cases, the combinations above are reduced to a popular FLUTe Trio which includes the sealing Blank liner, the transmissivity profile for each borehole after they are all sealed (sometimes following the geophysics measurements in each hole as the blank is removed) and the Water FLUTe installation in all the boreholes. The advantages of the combinations The combination of the several methods, sometimes including various geophysical measurements, in a single fielding campaign can be very cost effective and provide a wide range of hydrologic information. The ability to consider the results from the measurements in all boreholes before selecting the monitoring intervals in each hole allows the best use of the resources without the need to make a snap judgment of the completion of each well as it is being drilled. With the transmissivity profiling results in hand, one can also select the minimum sections of the FACT activated carbon from each borehole for the relatively expensive analysis with the GCMS technique. The activated carbon felt can be stored in DI water with little concern about loss of contaminants for many days based on tests done by the Danish Technical University. The uncertainty of straddle packer seals in an open hole in fractured rock makes the dependence on those measurements problematic. This is especially true if the objective is to determine the depth of contamination in the formation. The uncertainty of the packer seal is also compounded by the time the borehole is open to cross connection during the straddle packer testing. The power point presentation “The Full Use of FLUTe Technology in Fractured Rock” describes the potential efficiencies of combinations of the flexible liner methods for a wide variety of hydrologic assessments. Combinations of FLUTe Methods SPACER

  • FLUTe - Why Seal a Borehole?

    Sealing a borehole with FLUTe liners after drilling prevents cross contamination. With traditional practice, the borehole is left open for extended periods of time between the time the borehole was drilled and downhole characterization. Additionally, if straddle packer systems are used for characterization... Why Seal a Borehole? Sealing a borehole with FLUTe liners after drilling prevents cross contamination . With traditional practice, the borehole is left open for extended periods of time between the time the borehole was drilled and downhole characterization. Additionally, if straddle packer systems are used for characterization, large portions of the borehole remain unsealed during all portions of the investigation. The problems that can occur when boreholes remain open include mobilization of contaminants into the open borehole, contaminant adhesion to the borehole wall, and contaminated migration from the open borehole into previously uncontaminated fractures (See "Figure 1" and "Figure 2"). Additionally, when making measurements with straddle packers, which by default leave portions of the borehole open, leakage past the packer can result in exaggerated flow rates and contaminant distributions that are erred from cross contamination with mixed borehole water. By using FLUTe liners, the borehole is either sealed while all downhole measurements are collected or as the liner sequentially seals off flow paths. In the way, the data integrity is very high as cross contamination and cross flow measurements cannot occur. Figure 1. DNAPL confined to an isolated fracture Figure 2. DNAPL spread to other fractures as a result of the newly drilled borehole acting as a flow path between otherwise unconnected fractures.

  • FLUTe - Liner Mechanics

    FLUTe liners are delivered to the site on a shipping reel with the liner wound inside out (see "Figure 1"). The open end of the liner is clamped to the wellhead and the liner is then pushed inside the casing a foot or so to create a small pocket. Water is then added to the pocket to a level above the water....... Liner Mechanics FLUTe liners are delivered to the site on a shipping reel with the liner wound inside out (see "Figure 1"). The open end of the liner is clamped to the wellhead and the liner is then pushed inside the casing a foot or so to create a small pocket. Water is then added to the pocket to a level above the water table of the formation, creating a driving pressure on the bottom end of the liner. The driving pressure (typically 5 to 10 feet of water pressure) allows the liner to propagate down the borehole (eversion), displacing the borehole water into open flow paths and seals the liner firmly to the borehole wall (see "Animation"). Figure 1. Liner on Shipping Reel Figure 2. Water Addition to the liner Animation: Liner Eversion The pressure exerted by the liner on the borehole wall is very strong and seals off all fracture flows in the borehole (see "Video"). The driving pressure needed to evert the liner down the borehole mainly depends on the head of the formation. For high head or artesian conditions, differential pressure can be achieved by the addition of higher density muds to the interior of the liner or by the use of stand pipes and elevated platforms during installation. Video: Liner Sealing Quality Video

  • FLUTe - Benefit of FLUTe Liners

    1. Provide a continuous seal of a borehole or pipe, and prevent migration of formation fluids through the open hole. No sealing grouts or bentonite seals are needed. 2. Quickly map borehole transmissivity and vertical head distributions while displacing.... Benefits of Using FLUTe Liners 1) Provide a continuous seal of a borehole or pipe, and prevent migration of formation fluids through the open hole. No sealing grouts or bentonite seals are needed. 2) Quickly map borehole transmissivity and vertical head distributions while displacing the borehole water. Equivalent to conducting packer testing on a 6" to 12" scale with higher resolution and no issues of leakage or packer bypass. 3) Map contaminant distribution in the pure phase (NAPL FLUTe ) and dissolved phase (FACT) . 4) Collect multiple discrete groundwater samples directly from the formation via a positive displacement gas driven sampling liner (Water FLUTe ) and a peristaltic pump driven liner (Shallow Water FLUTe ). 5) Reduce cost and field time for the client while delivering high resolution data. 6) Carry many useful devices such as tubing, instruments, absorbers, reactive covers, etc. into place in the borehole while maintaining a continuous seal of the borehole. 7) Support the borehole wall against slough and collapse. 8) Custom fabricated to meet demands of many different diameters and materials for many applications. 9) Propagate through tortuous passages of varying diameters inaccessible to rigid piping or push rods. 10) Warrantied and fully removable without the liner touching any other portion of the borehole wall.

bottom of page